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Abstract
In this paper, we construct six families of conformal superalgebras of infinite
type, motivated from free quadratic fermonic fields with derivatives, and we
prove their simplicity. The Lie superalgebras generated by these conformal
superalgebras are proven to be simple except for a few special cases in the
general linear superalgebras and the type-Q lie superalgebras, in which these Lie
superalgebras have a one-dimensionalcentre and the quotient Lie superalgebras
modulo the centre are simple. Certain natural central extensions of these
families of conformal superalgebras are also given. Moreover, we prove
that these conformal superalgebras are generated by their finite-dimensional
subspaces of minimal weight in a certain sense. It is shown that a conformal
superalgebra is simple if and only if its generated Lie superalgebra does not
contain a proper nontrivial ideal with a one-variable structure.

PACS numbers: 11.25.Hf, 02.20.Sv, 11.30.Pb

1. Introduction

The notion of conformal superalgebras was introduced by Kac [10], as the local structure
of a certain Lie superalgebra with a one-variable structure. The algebraic entity of two-
dimensional quantum field theory is a certain new representation theory of Lie superalgebras
with one-variable structure. In terms of vertex superalgebras, conformal superalgebras are
positive parts of vertex superalgebras [10, 21], which are closed local systems in the sense
of Li [15]. From the point of view of simple algebra, the category of conformal algebras
is much smaller than that of vertex algebras. D’Andrea and Kac have proven that a simple
conformal algebra of finite type is either isomorphic to the centreless Virasoro conformal
algebra or isomorphic to a loop conformal algebra associated with a finite-dimensional simple
Lie algebra [7]. In other words, there are no essentially new algebras in simple conformal
algebras of finite type. For infinite type, Zel’manov has an approach of introducing certain

0305-4470/03/061759+29$30.00 © 2003 IOP Publishing Ltd Printed in the UK 1759

http://stacks.iop.org/ja/36/1759


1760 S Ma

filtration and Gel’fand–Kirillov dimensions. The approach we use here is to study simple
conformal algebras of finite growth proposed by Xu [22].

In this paper, we construct six families of infinite conformal and their generated Lie
superalgebras, and we prove their simplicity (cf theorems 3.1 and 4.2). The construction is
motivated from free quadratic fermonic fields with derivatives. We also give certain natural
central extensions of these families of conformal superalgebras, and we prove a generator
theorem for each of these families of algebras (cf theorems 5.1–5.6). Besides, we define a one-
variable structure on the ideals of the Lie superalgebra generated by a conformal superalgebra.
Then we prove that a conformal superalgebra is simple if and only if its generated Lie
superalgebra does not contain a proper nontrivial ideal with a one-variable structure. Some
of our results are generalizations of Xu’s results on simple conformal superalgebras of finite
growth. Here, we give a more technical introduction.

Throughout this paper, the base field F is an arbitrary field of characteristic 0. Moreover,
Z denotes the ring of integers, N denotes the set of non-negative integers, Z+ denotes the set
of positive integers, Z− denotes the set of negative integers and Z2 = Z/2Z denotes the cyclic
group of order 2. When the context is clear, we use {0, 1} to denote the elements of Z2. Given
m,n ∈ N, we also define

m,n =
{{m,m + 1, . . . , n} if m � n

∅ if m > n.
(1.1)

Before presenting the definition of conformal superalgebras, we introduce some notations.
The following operator of taking residue will be used

Resz


∑

j∈Z

ξj z
j


 = ξ−1 (1.2)

where ξj are in some vector space V . Moreover, all the binomials are assumed to be expanded
in the second variable. For example,

1

z − x
= 1

z(1 − x/z)
=

∞∑
j=0

z−1

(
x

z

)j

=
∞∑

j=0

z−j−1xj . (1.3)

In particular, the above equation implies

Resx

1

z − x


∑

j∈Z

ξj x
j


 =

∞∑
j=1

ξ−j z
−j . (1.4)

So the operator Resx(1/(z − x)(· · ·)) takes part of negative powers in a formal series and
changes the variable x to z. For two vector spaces V and W , we denote by LM(V,W) the
space of linear maps from V to W and V [x1, . . . , xn] to be the set of polynomials of variables
x1, . . . , xn over V .

A conformal superalgebra R = R0
⊕

R1 is a Z2-graded F[∂]-module equipped with a
linear map Y +(·, z) : R → LM(R,R[z−1]z−1) satisfying

Y +(Ri, z)Rj ⊂ Ri+j [z−1] (1.5)

Y +(∂u, z) = d

dz
Y +(u, z) (1.6)

Y +(u, z)v = (−1)ijResx

1

z − x
ex∂Y +(v,−x)u (1.7)

Y +(u, z1)Y
+(v, z2) − (−1)ijY +(v, z2)Y

+(u, z1) = Resx

1

z2 − x
Y +(Y +(u, z1 − x)v, x) (1.8)
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for u ∈ Ri, v ∈ Rj with i, j ∈ Z2. (R, ∂, Y +(·, z)) denotes a conformal superalgebra. In
section 4, we see that a conformal superalgebra with property (4.1) induces a formal distribution
Lie superalgebra [10]. In that case equations (1.7) and (1.8) correspond to the skew-symmetry
and Jacobi identity of Lie superalgebra respectively. Then, the central extensions in section 5
are associated with central charges.

Let C be any Z2-graded associative algebra over F. From a Z2-graded tensor

Ri = Ci

⊗
F
F[t1, t2] for i ∈ {0, 1} (1.9)

where t1, t2 are indeterminants. For convenience, we denote

u(m, n) = u ⊗ tm1 tn2 for u ∈ C m,n ∈ N. (1.10)

We define the F[∂]-action on R = R0
⊕

R1 by

∂(u(m, n)) = (m + 1)u(m + 1, n) + (n + 1)u(m, n + 1) (1.11)

and the structure map Y +(·, z) on R by

Y +(u(m1,m2), z)v(n1, n2) =
(−n1 − 1

m2

) m1+m2+n1∑
p=0

(
p

m1

)
(uv)(p, n2)z

p−m1−m2−n1−1

− (−1)ij
(−n2 − 1

m1

) m1+m2+n2∑
q=0

(
q

m2

)
(vu)(n1, q)zq−m1−m2−n2−1 (1.12)

for u ∈ Ci , v ∈ Cj with i, j ∈ Z2 and m1,m2, n1, n2 ∈ N. The above formulae are motivated
from quadratic free fermionic fields [21, 22]. It was verified in [21] that (R, Y +(·, z), ∂) forms
a conformal superalgebra.

The objective of this paper is to construct six families of simple conformal superalgebras
of infinite type based on the above conformal superalgebra and to study their central extensions
and the Lie superalgebras generated by them. Central extensions are related to a crucial and
indispensable concept in quantum field theory called anomaly. Xu [22] constructed three
families of conformal superalgebras by using mixed quadratic bosonic fermionic fields. We
find that those conformal superalgebras are actually our special cases. This implies that the
theory of mixed quadratic bosonic fermionic fields with derivatives can be realized by pure
fermonic fields with derivatives. Since the algebras we are concerned with are infinite in
dimension, it is important to know if they can be generated by interesting finite-dimensional
subspace. We prove a generator theorem with this property for each family of our extended
conformal superalgebras. They are analogues to those constructed by Xu in [22], in which the
sets are shown to form simple Jordan algebras of types A, B and C in a certain sense.

The W∞ algebra without a centre [3], the W1+∞ algebra without a centre [19] in
mathematical physics and the W1+∞(glk) algebra without a centre related to the k-component
KP hierarchy studied by van de Leur [16] are all special cases of the algebras constructed
in [22]. The supersymmetric analogue of W1+∞ [6, 25, 26] is also related to the algebras in
[22], which are special cases of the algebras presented in this paper. Moreover, we deal with
the issue of the central extension that is absent in [22]. This is important because Johansen
[8] has shown that there exist two W∞ (with centre) symmetries in the cohomology of the
BRST operator in a twisted N = 1 SUSY model. To avoid pathological properties, a sensible
theory often requires finite dimensionality of the graded subspaces in a representation (known
as the quasi-finiteness condition). Such representations make our algebras more palatable for
physical applications in a similar way as W∞ [1, 14]. We believe that all the results in this
paper will be useful in the classification of conformal field theory [12, 13, 18, 20], which is
one of the most important objectives in two-dimensional quantum field theory and is related to
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string theory. They can also be applied to integrable dynamic systems by Xu’s correspondence
of conformal superalgebras to linear Hamiltonian superoperators [23].

The paper is organized as follows. In section 2, we show the relationship between the
conformal superalgebra we have used (cf equation (1.12)) and the free fermionic field. The
vertex algebra behind is also given. In section 3, we construct six families of classical simple
Lie superalgebras over the algebra of differential operators on the Laurent polynomial algebra
in one variable. In section 4, we construct six families of conformal superalgebras that
generate the Lie superalgebras isomorphic to those constructed in section 3. Their simplicity
is also proven. Section 5 is devoted to constructing certain natural central extensions of the
Lie superalgebras and the conformal superalgebras that are constructed in sections 3 and 4.
Moreover, certain generator sets of the extended conformal superalgebra are also present.

2. Free quadratic fermionic fields with derivatives

In this section, we present the conformal subalgebras related to quadratic free fermionic fields
with derivatives.

Let H be a finite-dimensional vector space with a nondegenerate symmetric bilinear form
〈·, ·〉 such that there exist two subspaces H+,H− satisfying H = H+ + H− and

〈H+,H+〉 = 〈H−,H−〉 = 0. (2.1)

Thus, H+ is isomorphic to the dual space (H∗) through the nondegenerate symmetric bilinear
form 〈·, ·〉.

Let t be an indeterminate and set

Ĥ = H ⊗F F[t, t−1]t1/2 ⊕ Fκ (2.2)

where κ is a symbol to denote a base vector of one-dimensional vector space. We define an
algebraic operation [·, ·] on Ĥ by

[h1 ⊗ tm + λ1κ, h2 ⊗ tn + λ2κ] = 〈h1, h2〉δm+n,0κ (2.3)

for h1, h2 ∈ H,m, n ∈ Z + 1/2, λ1 + λ2 ∈ F. Then (Ĥ , [·, ·]) forms a Lie superalgebra with
the Z2-grading

Ĥ 1 = H ⊗F F[t, t−1]t1/2 and Ĥ 0 = Fκ. (2.4)

For convenience, we denote

h(m) = h ⊗ tm for h ∈ H m ∈ Z + 1/2. (2.5)

We set

Ĥ− = Span{h(−m)|h ∈ H,m ∈ N + 1/2} (2.6)

B̂H = Span{κ, h(m)|h ∈ H,m ∈ N + 1/2}. (2.7)

Then Ĥ− and B̂H are trivial Lie sub-superalgebras of Ĥ and

Ĥ = Ĥ− ⊕ B̂H . (2.8)

Let F|0〉 be a one-dimensional vector space with the base element |0〉, the vacuum state.
We define an action of B̂H on |0〉 by

h(m)|0〉 = 0 and κ |0〉 = |0〉 for h ∈ H m ∈ N + 1/2. (2.9)

Then F|0〉 forms a B̂H -module. We can view Ĥ− and B̂H , respectively, as the sets of creation
and annihilation operators with identity element κ of the Fock space defined thereinafter.
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U(·) denotes the universal enveloping algebra of a Lie algebra and ∧(·) denotes the exterior
algebra generated by a vector space. Then the Fock space F can be defined as an induced
Ĥ -module by

F = U(Ĥ ) ⊗U(B̂H ) F|0〉(∼=
∧

(Ĥ−) ⊗F |0〉 as vector spaces). (2.10)

Moreover, we set

h+(z) =
∞∑

m=0

h(m + 1/2)z−m−1 h−(z) =
∞∑

m=1

h(−m + 1/2)zm−1 (2.11)

h(z) = h+(z) + h−(z) (2.12)

for h ∈ H. As operators on F, {h(z)|h ∈ H } are called free fermionic fields.
For convenience, we denote

u ⊗ |0〉 = u for u ∈
∧

(Ĥ−). (2.13)

Notice that the vacuum state 1F ⊗ |0〉 will then be denoted by 1F.
To construct a vertex operator superalgebra, we define a linear map Y

(|R̂2
, z
)

: F →
LM(F,F[z−1, z]) by

Y (1F, z) = IdF (2.14)

and

Y (h1(−n1 − 1/2)h2(−n2 − 1/2) · · ·hp(−np − 1/2), z)

= 1

n!

(
dn1h−

1 (z)

dzn1
Y (h2(−n2 − 1/2) · · ·hp(−np − 1/2), z)

− (−1)pY (h2(−n2 − 1/2) · · ·hp(−np − 1/2), z)
dn1h+

1(z)

dzn1

)
(2.15)

for h1, h2, . . . , hp ∈ H,n1, n2, . . . , np ∈ N. Such a definition is actually the generalization
of normal ordering of free fermionic fields, which is defined as

: h1(z)h2(z) := h−
1 (z)h2(z) − h2(z)h

+
1(z) for h1, h2 ∈ H. (2.16)

Let k be the dimension of H. We pick an orthonormal basis {bj |j ∈ 1, k} of H with respect
to 〈·, ·〉. Then (F, Y (·, z), 1F, ω) forms a vertex operator superalgebra [21] with the Virasoro
ω element given by

ω = 1

2

k∑
j=1

bj

(
−3

2

)
bj

(
−1

2

)
. (2.17)

For the construction of a related conformal algebra, we set

R̂2 = Span{h1(−m)h2(−n), 1F|h1 ∈ H+, h2 ∈ H−,m, n ∈ N + 1/2}. (2.18)

The restricted map Y
(|R̂2

, z
)

: R̂2 → LM(F,F[z−1, z]) will then be equation (2.14) and

Y (h1(−m − 1/2)h2(−n − 1/2), z) = 1

m!n!

(
dmh−

1 (z)

dzm

dnh2(z)

dzn
− dnh2(z)

dzn

dmh+
1(z)

dzm

)
(2.19)

for h1 ∈ H+, h2 ∈ H− and m,n ∈ N. The operator Y (h1(−m − 1/2)h2(−n − 1/2), z) is a
quadratic fermionic field with derivatives. Moreover, we write

Y (u, z) =
∑
m∈Z

un(z)
−n−1 Y +(u, z) =

∞∑
n=0

un(z)
−n−1 for u ∈ R̂2. (2.20)
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In particular,

(h1(−m − 1/2)h2(−n − 1/2))k

=
∞∑

j=0

[(−j − 1
−n

)(
j + m + n − k

m

)
h1(k − m − n − j − 1/2)h2(j + 1/2)

−
(−j − 1

m

)(
j + m + n − k

n

)
h2(k − m − n − j − 1/2)h1(j + 1/2)

]
(2.21)

for h1 ∈ H+, h2 ∈ H− and m,n, k ∈ N. It can be shown that

Y +(u, z)v ⊂ R̂2[z−1]z−1 for u, v ∈ R̂2. (2.22)

Moreover, we define ∂ ∈ End R̂2 by ∂(1F) = 0 and

∂(h1(−m − 1/2)h2(−n − 1/2)) = (m + 1)h1(−m − 3/2)h2(−n − 1/2)

+ (n + 1)h1(−m − 1/2)h2(−n − 3/2) (2.23)

for h1, h2 ∈ H and m,n ∈ N. Then the family
(
R̂2, ∂, Y +

(|R̂2
, z
))

forms a conformal algebra.
According to linear algebra, there exists another basis

{
ς±

j

∣∣j ∈ I
}

of H± [21] such that〈
ς+

i , ς−
j

〉 = δi,j for i, j ∈ I (2.24)

by equation (2.1) and nondegeneracy of 〈·, ·〉, where I is an index set. By equation (2.21), we
have

ς+
j1
(−m)ς−

j2
(m)
(
ς+

j3
(−m)ς−

j4
(−m)

) = δj2,j3ς
+
j1
(−m)ς−

j4
(−m) (2.25)

for j1, j2, j3, j4 ∈ I and m ∈ N + 1/2. Expression (2.25) is essentially equivalent to
matrix multiplications. This gives the motivation of the conformal algebra constructed in
equation (1.12).

3. Lie superalgebras

In this section, we construct six families of Lie superalgebras from a rank-one Weyl algebra.
These algebras are simple by the results in [2].

For a Z2-graded associative algebra B = B0
⊕

B1, the associated Lie superbracket is
defined by

[u, v] = uv − (−1)ijvu (3.1)

for u ∈ Bi , v ∈ Bj . A linear map σ on B is known as an involutive anti-isomorphism if

σ(Li) = Li σ 2 = IdL σ(uv) = (−1)ijσ (v)σ (u) for u ∈ Li v ∈ Lj .

(3.2)

If we set

Lσ = {u ∈ L|σ(u) = −u} (3.3)

then it will always form a Lie sub-superalgebra of L. We let

A = F[t, t−1] ∂t = d

dt
. (3.4)

Then

A =
∞∑

n=0

A∂n
t (3.5)



Conformal and Lie superalgebras motivated from free fermionic fields 1765

forms an associative subalgebra of End A. In fact,

(
f (t)∂m

t

)(
g(t)∂n

t

) = m∑
j=0

(
m

j

)
f (t)g(j)(t)∂

m+n−j
t for m,n ∈ N f (t), g(t) ∈ A

(3.6)

where

g(j)(t) = djg(t)

dtj
for j ∈ N. (3.7)

Now we are ready to construct the first two families of Lie superalgebras. For a positive
integer n, we denote by Mn×n(A) the algebra of n × n matrices with entries in A. For
i, j ∈ 1, n,Ei,j denotes the n × n matrix with 1 as its (i, j)-entry and 0 as the other entries.

We fix a positive integer k. We take nonzero polynomials

f1(∂t ), f2(∂t ), . . . , fk(∂t ) ∈ F[∂t ] (3.8)

and set

Bp = Afp(∂t ) for p ∈ 1, k. (3.9)

Then {B1, B2, . . . , Bk} is a set of nonzero left ideals of A. We let

f = (f1, f2, . . . , fk) d = (d1, d2, . . . , dk) with di = deg fi. (3.10)

Denote 0 = (0, 0, . . . , 0).
Given k1 ∈ 1, k, we let k2 = k − k1. Setting

	0 = {1, 2, . . . , k1} and 	1 = {k1 + 1, k1 + 2, . . . , k} (3.11)

we define

gl(k1, f )0 =
∑

i,j∈	0

BjEi,j +
∑

i,j∈	1

BjEi,j

(3.12)
gl(k1, f )1 =

∑
i∈	0,j∈	1

BjEi,j + BiEj,i

and

gl(k1, f ) = gl(k1, f )0

⊕
gl(k1, f )1. (3.13)

Then gl(k1, f ) forms a Lie sub-superalgebra of Mk×k(A) with the Lie superbracket defined in
equation (3.1). When d = 0, gl(k1, f ) = Mk×k(A) has a one-dimensional centre FIk , where
Ik is the k × k identity matrix. We define the quotient Lie superalgebra

sl(k1, k2; A) = Mk×k(A)/FIk. (3.14)

Next we define

Q( f ) = gl(k, f ) × gl(k, f ). (3.15)

and an algebraic operation · on Q( f ) by

(a, b) · (c, d) = (ac + bd, ad + bc) for a, b, c, d ∈ gl(k, f ). (3.16)

The Z2-grading of Q( f ) is given by

Q( f )0 = (gl(k, f ), 0) Q( f )1 = (0, gl(k, f )) (3.17)

Then

Q( f ) = Q( f )0

⊕
Q( f )1. (3.18)
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forms a Lie superalgebra with the Lie superbracket defined in equation (3.1). For later use,
we also denote

u[0] = (u, 0) and u[1] = (0, u) for u ∈ gl(k, f ). (3.19)

In order to construct the third family, we define τ ∈ End A by

τ
(
h(t)∂m

t

) = (−∂t )
mh(t) = (−1)m

m∑
j=0

(
m

j

)
h(j)(t)∂

m−j
t for m ∈ N h(t) ∈ A.

(3.20)

Then τ is an involutive anti-automorphism of the associative algebra A, that is,

τ 2 = 1 τ (1) = 1 τ (uv) = τ (v)τ (u) for u, v ∈ A. (3.21)

For i ∈ {0, 1}, we define

(F[∂t ])i =
∞∑

n=0

F∂2n+i
t . (3.22)

We fix a positive integer k and ι ∈ {0, 1}. Picking k1 ∈ 1, k and taking nonzero polynomials

f1(∂t ), f2(∂t ), . . . , fk1(∂t ) ∈ (F[∂t ])ι fk1+1(∂t ), . . . , fk(∂t ) ∈ (F[∂t ])ι+1 (3.23)

we set equation (3.9). For each pair i, j ∈ 1, k, we define a linear map ρi,j : Bi → Bj by

ρi,j (ufi(∂t )) = (−1)ι+ε(i,j)τ (u)fj (∂t ) for u ∈ A (3.24)

where

ε(i, j) =
{

0 if i, j ∈ 	0,

1 otherwise.
(3.25)

Then we have

ρi,j ρj,i = IdBi
for i, j ∈ 1, k (3.26)

and

ρp3,p1(uv) = (−1)(i1+i2)(i3+i2)ρp3,p2(v)ρp2,p1(u) for pj ∈ 	ij u ∈ Bp2 v ∈ Bp3 .

(3.27)

We define gl(k1, f ) as in equation (3.13). Then gl(k1, f ) forms a Lie sub-superalgebra
of Mk×k(A). Moreover, we define a linear map ∗ : gl(k1, f ) → gl(k1, f ) by

 k∑
i,j=1

ui,jEi,j




∗

=
k∑

i,j=1

ρi,j (uj,i )Ei,j for ui,j ∈ Bj . (3.28)

It can be verified that ∗ is an involutive anti-automorphism of gl(k1, f ). We define

o(k1, f ) = {A ∈ gl(k1, f )|A∗ = −A} (3.29)

with the grading inherited from gl(k1, f ). Then the subspace o(k1, f ) forms a Lie sub-
superalgebra of Mk×k(A) with the Lie superbracket defined in equation (3.1). In fact

o(k1, f ) = Span
{
tn∂m

t fj (∂)Ei,j − (−1)ι+ε{i,j}(−∂t )
mtnfi (∂)Ej,i|n ∈ Z,m ∈ N, i, j ∈ 1, k

}
.

(3.30)

Next we construct the fourth family. Taking f as equation (3.23) and setting

�0 =
∑

a,b∈{0,k}


 ∑

i,j∈	0

BjEi+a,j+b +
∑

i,j∈	1

BjEi+a,j+b


 (3.31)
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and

�1 =
∑

a,b∈{0,k}


 ∑

i∈	0,j∈	1

BjEi+a,j+b + BiEj+a,i+b


 (3.32)

then � = �0
⊕

�1 forms an associative subalgebra of M2k×2k(A). Moreover, we define a
linear map † : � → � by
 2k∑

p,q=1

up,qEp,q




†

=
k∑

i,j=1

(ρi,j (uk+j,k+i )Ei,j + ρi,j (uj,i )Ek+i,k+j

− ρi,j (uj,k+i )Ei,k+j − ρi,j (uk+j,i )Ek+i,j ) (3.33)

for up,j , up,k+j ∈ Bj . It can be verified that † is an involutive anti-automorphism of � . Set

sp(k1, f ) = {A ∈ �|A† = −A} (3.34)

with the grading inherited from � . The subspace sp(k1, f ) forms a Lie sub-superalgebra of
M2k×2k(A) with the Lie superbracket defined in (3.1).

For the fifth family, we fix a k ∈ Z+ and ι ∈ {0, 1} as before. We take nonzero polynomials

fi(∂t ) ∈ (F[∂t ])ι for i ∈ 1, k. (3.35)

For m,n ∈ 1, k, we define

Mm,n( f ) =
∑

i∈1,m,j∈1,n

BjEi,j ⊂ Mm×n(A). (3.36)

We define a linear map T :
⋃

m,n∈1,k Mm,n( f ) → ⋃m,n∈1,k Mm,n( f ) such that for m,n, i, j ∈
1, k,

(Mm×n( f ))T ⊂ Mn×m( f ) (3.37)

and

(ufj (∂t )Ei,j )
T = (−1)ιτ (u)fi(∂t )Ej,i for u ∈ A. (3.38)

We set

� ′
0 =

k∑
i,j=1

(BjEi,j + BjEk+i,k+j ) (3.39)

and

� ′
1 =

k∑
i,j=1

(BjEi,j+k + BjEi+k,j ). (3.40)

Then � ′ = � ′
0

⊕
� ′

1 is a Z2-graded associative subalgebra of M2k×2k(A). Moreover, we
define a linear map σp by

σp

[(
A B

C D

)]
=
(

DT −BT

CT AT

)
(3.41)

where A,B,C,D ∈ Mk,k( f ). It can be verified that σp is a supersymmetric involutive anti-
automorphism of � ′. Setting

P( f ) = {u ∈ � ′|σp(u) = −u} (3.42)

and defining the grading of it by

P( f ) = P( f )0

⊕
P( f )1 with P( f )i = P( f )

⋂
� ′

i (3.43)

then P( f ) forms a Lie sub-superalgebra of � ′.
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We take f as equation (3.35) and pick m ∈ 1, k. Then the last family is constructed by
setting

� ′′
0 =

m∑
i,j=1

BjEi,j +
k∑

i,j=1

(BjEm+i,m+j + BjEm+k+i,m+k+j + BjEk+m+i,m+j + BjEm+i,k+m+j )

(3.44)

� ′′
1 =

m∑
i=1

k∑
j=1

(BjEi,m+j + BjEi,m+k+j + BiEm+j,i + BiEm+k+j,i ) (3.45)

and then � ′′ forms a Z2-graded associative subalgebra of M(m+2k)×(m+2k)(A) with

� ′′ = � ′′
0

⊕
� ′′

1 . (3.46)

Moreover, we define a linear map σos by

σos




A B1 B2

C1 D1,1 D1,2

C2 D2,1 D2,2




 =




AT −CT
2 CT

1

BT
2 DT

2,2 −DT
1,2

−BT
1 −DT

2,1 DT
1,1


 (3.47)

where A ∈ Mm×m( f ), Bi ∈ Mm×k( f ), Ci ∈ Mk×m( f ),Di,j ∈ Mk×k( f ) for all i, j ∈ {0, 1}.
It can be verified that σos is a supersymmetric involutive anti-automorphism of � ′′. We define

osp(m, 2k; f ) = {u ∈ � ′′|σos(u) = −u} (3.48)

and

osp(m, 2k; f ) = osp(m, 2k; f )0

⊕
osp(m, 2k; f )1 (3.49)

with

osp(m, 2k; f )i = osp(m, 2k; f )
⋂

� ′′
i (3.50)

forming a Lie sub-superalgebra of � ′′.
Using the results in [2], we obtain the following theorem.

Theorem 3.1. The Lie superalgebras o(k1, f ) in equation (3.29), sp(k1, f ) in
equation (3.34), P( f ) in equation (3.42) and osp(m, 2k; f ) in equation (3.48) are simple.
Moreover, the Lie superalgebras gl(k1, f ) in equation (3.13) and Q( f ) in equation (3.15)
are also simple provided that d �= 0. If d = 0, then sl(k1, k2; A) in equation (3.14) and
Q(0)/(FIk, 0) will be simple.

Remark. We have proven that the conformal superalgebras R[k1,k2],�+1, R
∗
[k1,k2] and R

†
[k1,k2] in

section 4 of [22] are isomorphic special cases of R( f ),R∗( f ) and R†( f ), respectively. This
implies that the theory of mixed free quadratic fields with derivatives (of a free bosonic field
and a fermionic field) can be realized by the theory of free quadratic fermionic fields with
derivatives.

4. Connections of the Lie superalgebras with the conformal superalgebras

In this section, we construct six families of simple conformal superalgebras, which generate
Lie superalgebras isomorphic to those constructed in previous section.

We let (R, Y +(·, z), ∂) be a conformal superalgebra such that R is a free F[∂]-module over
its subspace V , that is,

R = F[∂]V ∼= F[∂]
⊗

F
V. (4.1)
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Letting ζ be an indeterminate, we set

L(R) = V
⊗

F
F[ζ, ζ−1]. (4.2)

For r ∈ V,m ∈ N, j ∈ Z, we let

(∂mv)[j ] = m!

(
m − 1 − j

m

)
v[j−m] = m!

(
m − 1 − j

m

)
v ⊗ ζ−(j−m)−1. (4.3)

Then we can define the algebraic operation [·, ·] on L(R) by

[u[a], v[b]] =
∞∑

n=0

(
a

n

)
(un(v))[a+b−n] for u, v ∈ R a, b ∈ Z (4.4)

where un(·), n ∈ N are the components of Y +(·, z) such that

Y +(u, z) =
∞∑

n=0

unz
−n−1. (4.5)

Then (L(R), [·, ·]) forms a Lie superalgebra [10, 21].
We call I an ideal of R if I is F[∂]-submodule of R and

un(I) ⊂ I for u ∈ R n ∈ N. (4.6)

A conformal superalgebra is said to be simple if it does not contain a proper nontrivial ideal.
For a subset S of R, we define

S[Z] = Span{u[n]|u ∈ S, n ∈ Z}. (4.7)

An ideal J of L(R) is called an ideal with one-variable structure if ∃S ⊂ R such that

J = S[Z]. (4.8)

Theorem 4.1. A conformal superalgebra R is simple if and only if its generated Lie
superalgebra L(R) does not contain any proper nontrivial ideal with one-variable structure.

Proof. Suppose L(R) does not contain a proper nontrivial ideal with one-variable structure.
For an ideal I of R, we have

[v[a], u[b]] =
∞∑

n=0

(
a

n

)
(vn(u))[a+b−n] ∈ I[Z] (4.9)

with v ∈ V, u ∈ I and a, b ∈ Z, that is, I[Z] is an ideal of L(R) with one-variable structure.
Assume I �= 0. Then I[Z] = L(R) by the assumption of L(R). This means that, given v ∈ V ,
we can find a finite set {um|∈Z} of I such that

v ⊗ ζ−1 = v[−1] =
∑
m∈Z

um[m]. (4.10)

It can be deduced from equation (4.3) that∑
m∈N

um[m] ∈ V
⊗

F
F[ζ ] and

∑
m∈Z−

um[m] ∈ V
⊗

F
F[ζ−1]ζ−1. (4.11)

Hence,

∑
m∈N

um[m] = 0 and
∑

m∈Z−
um[m] =

(∑
m∈Z−

1

(−m − 1)!
∂−m−1um

)
[−1]

= v[−1].

(4.12)
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According to equation (4.3), the map u → u[−1] is an injective map from R to L(R). Hence,

∑
m∈Z−

1

(−m − 1)!
∂−m−1um = v. (4.13)

Since I is ideal of R, it is invariant under the action of ∂ . Hence, v ∈ I. This implies V ⊂ I.
Therefore, R = F[∂]V = I . So, R is simple.

Now we assume that R is simple. We let J be an nontrivial ideal with one-variable
structure of L(R). Defining

I(J ) = {r ∈ R|r[n] ∈ J for all n ∈ Z} (4.14)

then I(J ) is a subspace of R. For u ∈ I(J ) and m ∈ Z, we have (∂u)[m] = −mu[m−1] ∈ J .
So I(J ) is a F[∂]-submodule of R. Let r ∈ R and u ∈ I(J ). We have

[r[0], u[b]] = (r0(u))[b] ∈ J (4.15)

for b ∈ Z since J is an ideal of L(R), which means r0(u) ∈ I(J ). We now start an induction
by supposing rm(u) ∈ I(J ) for all m � k, for some k ∈ N. Note

[r[k+1], u[b]] = (rk+1(u)) +
k∑

n=0

(
k + 1

n

)
(rn(u))[k+1+b−n] ∈ J (4.16)

for all b ∈ Z. So (rk+1(u))[b] ∈ J for all b ∈ Z by the induction assumption, which implies
rk+1(u) ∈ I(J ) by equation (4.14). Therefore, the induction have shown that rb(u) ∈ I(J )

for b ∈ N. Then I(J ) is an nontrivial ideal of R and hence I(J ) = R. As a result, J = L(R).
�

Let C be a Z2-graded associative algebra over F. We define the conformal superalgebra R
by equations (1.9)–(1.12). Setting

V = C
⊗

F
F[t2] = Span {u(0, n)|u ∈ C, n ∈ N} (4.17)

it can be verified that R is a free F[∂]-module. We define a linear map ν : L(R) → A
⊗

F
C by

ν(m!u(0,m) ⊗ ζ n) = tn∂m
t u for u ∈ C m ∈ N n ∈ Z (4.18)

which implies

ν(u(p,m)[n]) = 1

p!m!
(−∂t )

ptn∂m
t u for u ∈ C m,p ∈ N n ∈ Z. (4.19)

Using equation (1.12), we have

u(m1,m2)nv(n1, n2) =
(−n1 − 1

m2

)(
m1 + m2 + n1 − n

m1

)
uv(m1 + m2 + n1 − n, n2)

− (−1)ij
(−n2 − 1

m1

)(
m1 + m2 + n2 − n

m2

)
vu(n1,m1 + m2 + n2 − n) (4.20)

for u ∈ Ci , v ∈ Cj and n,m1,m2, n1, n2 ∈ N.
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Besides the Z2-grading, we can also assign a Z-grading to L(R) by setting the grade of
u(m1,m2)[a] to be a − m1 − m2 (cf equations (4.4) and (4.20)). Then, it is conceivable that
our Lie superalgebras possess some quasi-finite representations [14]. This means there exists
a Z-graded L(R)-module V =⊕i∈Z

Vi such that each Vi is finite in dimension.

Lemma 4.1. The linear map ν is a Lie superalgebra isomorphism from L(R) to A
⊗

F
C with

the Lie superbracket defined in equation (3.1).

Proof. It is clear that ν is vector space isomorphism. Now we let u ∈ Cg1 , v ∈ Cg2 with
g1, g2 ∈ Z2, and we let g = g1g2. For m, r ∈ N, n, s ∈ Z,

[ν(u(0,m) ⊗ ζ n), ν(v(0, r) ⊗ ζ s)] = 1

m!r!

[
tn∂m

t u, ts∂r
t v
]

= 1

m!r!

(
tn∂m

t ts∂r
t uv − (−1)gts∂r

t t
n∂m

t vu
)
. (4.21)

On the other hand,

ν([u(0,m) ⊗ ζ n, v(0, r) ⊗ ζ s]) = ν

( ∞∑
i=0

(
n

i

)
(u(0,m)iv(0, r))[n+s−i]

)

=
∞∑
i=0

1

m!r!

(
(−1)m

(
m,n

i

)
(−∂)m−i tn+s−i∂r

t uv

− (−1)g
(

m,n

i

)
tn+s−i∂m+r−i

t vu

)
(4.22)

where (
i, j

l

)
= i!j !

(i − l)!(j − l)!l!
for i, j, l ∈ Z. (4.23)

Using

∂r
t t

n =
∞∑
i=0

(
r, n

i

)
tn−i ∂r−i

t and tn∂m
t =

∞∑
i=0

(
m,n

i

)
(−1)i∂m−i

t tn−i (4.24)

in (4.23), we obtain

ν([u(0,m) ⊗ ζ n, v(0, r) ⊗ ζ s]) = [ν(u(0,m) ⊗ ζ n), ν(v(0, r) ⊗ ζ s)]. (4.25)

�

Lemma 4.2. Let V ′ be a subspace of V and R′ = F[∂]V ′. Then (R′, Y +(·, z), ∂) will be
conformal sub-superalgebra of (R, Y +(·, z), ∂) if L(R′) forms a Lie sub-superalgebra of L(R).

Proof. We need to show Y +(a, z)b ⊂ R′[z−1]z−1 for all a, b ∈ R′. This will be done if
we can show Y +(∂nu, z)∂mv ⊂ R′[z−1]z−1 for all n,m ∈ N and u, v are homogeneous in
V ′. Now given i, j ∈ Z2, u ∈ V ′

i , v ∈ V ′
j and m,n ∈ N, by the definition of Y +(·, z) in

equations (1.6) and (1.7), we obtain

Y +(∂nu, z)∂mv = (−1)ij
(

d

dz

)n

Res
1

z − x
ex∂

(
− d

dx

)m ∞∑
c=0

vcu(−x)−c−1. (4.26)

Therefore if we can show vcu ∈ R′ for c ∈ N, then we are done. Since L(R′) forms a Lie
sub-superalgebra,

[v ⊗ ζ a, u ⊗ ζ 0] =
∞∑

n=0

(
a

n

)
(vnu)[a−n] ∈ L(R′) (4.27)

for any a ∈ N. Hence, by induction, vcu ∈ R′ for all c ∈ N. �
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We now fix k ∈ Z+ throughout the rest of this section and define 	0,	1 as in equation
(3.11).

For the first two families of our conformal superalgebras, we let C = Mk×k(F) and we
define the grading on it by

C0 =
∑

i,j∈	0

FEi,j +
∑

i,j∈	1

FEi,j and C1 =
∑

i∈	0,j∈	1

(FEi,j + FEj,i). (4.28)

Taking f as equation (3.8), we write

fp =
np∑

q=0

ap,q∂
q
t for p ∈ 1, k. (4.29)

We define

E
f

i,j [m,n] =
nj∑

p=0

m!(n + p)!aj,pEi,j (m, n + p) (4.30)

and

E
f

i,j+k[m,n] =
nj∑

p=0

m!(n + p)!aj,pEi,j+k(m, n + p) for i ∈ 1, 2k j ∈ 1, k m, n ∈ N.

(4.31)

Then

∂
(
E

f
i,j [m,n]

) = E
f

i,j [m + 1, n] + E
f

i,j [m,n + 1] for i, j ∈ 1, 2k m, n ∈ N. (4.32)

Letting R( f ) = F[∂]V f , where

V f = Span
{
E

f
i,j [0, n]|i, j ∈ 1, k, n ∈ N

}
(4.33)

then R( f ) is a free F[∂]-module over the above V f . Letting ν ′ be ν|L(R( f )), we have

ν ′(E f
i,j [0,m] ⊗ ζ n

) = tn∂m
t fj (∂t )Ei,j for i, j ∈ 1, k m ∈ N n ∈ Z. (4.34)

Therefore, ν ′(L(R( f )) = gl(k1, f ), which implies that ν ′ is a Lie superalgebra isomorphism
from L(R( f )) to gl(k1, f ) by lemma 4.1. So, R( f ) is a conformal superalgebra by
lemma 4.2.

Next let

C = Mk×k(F) × Mk×k(F). (4.35)

Denote

u[0] = (u, 0) and u[1] = (0, u) for u ∈ Mk×k. (4.36)

We define the grading on C by

C0 = (Mk×k(F), 0) and C1 = (0,Mk×k(F)). (4.37)

Setting

V
Q

f = Span
{(

E
f

i,j

)
[p][0, n]|i, j ∈ 1, k, p ∈ Z2, n ∈ N

}
(4.38)

we let RQ( f ) = F[∂]V Q

f . It can be verified that RQ( f ) is a free F[∂]-module over V
Q

f .

Letting νQ be the restriction of ν on V
Q

f , then νQ is a Lie superalgebra isomorphism from

L(RQ( f )) to Q( f ) by lemma 4.1 with

νQ
((

E
f

i,j

)
[p][0, n] ⊗ ζm

) = tm∂n
(
E

f
i,j

)
[p] for i, j ∈ 1, k n ∈ N m ∈ Z p ∈ Z2.

(4.39)

By lemma 4.2, RQ( f ) is a conformal superalgebra.
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To introduce the third family of our conformal superalgebra, we take f as equation (3.23)
and we set

V ∗
f = Span

{
E

f
i,j [0, n] − (−1)ι+ε(i,j)E

f
j,i[n, 0]

∣∣i, j ∈ 1, k,m, n ∈ N
}
. (4.40)

Let R∗( f ) = F[∂]V ∗
f . Then R∗( f ) is a free F[∂]-module over the above V ∗

f . We define a

linear map ν∗ to be the restriction of ν on L(R∗( f )). We have

ν∗((E f
i,j [0,m] − (−1)ιE

f
j,i[m, 0]

)⊗ ζ n
) = tn∂m

t fj (∂t )Ei,j − (−1)ι(−∂t )
mtnfi(∂t )Ej,i

(4.41)

for i, j ∈ 1, k,m ∈ N, n ∈ Z. So ν∗ is a Lie superalgebra isomorphism from L(R∗( f )) to
o( f ). Hence, R∗( f )) is a conformal superalgebra.

Next we construct the fourth family of our conformal superalgebra. We let C be M2k×2k(F)

and we define the grading by

C0 =
∑

a,b∈{0,k}


 ∑

i,j∈	0

FEi+a,j+b +
∑

i,j∈	1

FjEi+a,j+b


 (4.42)

and

C1 =
∑

a,b∈{0,k}


 ∑

i∈	0,j∈	1

FEi+a,j+b + FEj+a,i+b


 . (4.43)

Take f as (3.23) and set

V
†
f = Span

{
E

f
i,j [0, n] − (−1)ι+ε{i,j}E

f
k+j,k+i[n, 0], E

f
i,k+j [0, n] + (−1)ι+ε{i,j}E

f
j,k+i[n, 0],

E
f

k+i,j [0, n] + (−1)ι+ε{i,j}E
f

k+j,i[n, 0]|i, j ∈ 1, k, n ∈ N
}
. (4.44)

We define R†( f ) = F[∂]V †
f . Then R†( f ) is a free F[∂]-module over the above V

†
f .

Letting ν† be the restriction of ν on L(R†( f )), then ν† is surjective and, hence, ν† is a
Lie superalgebra isomorphism from L(R†( f )) to sp(k1, f ). By lemma 4.2, L(R†( f )) is a
conformal superalgebra.

For the construction of the fifth family of our conformal superalgebra, we let C be
M2k×2k(F) and we define its grading by

C0 =
k∑

i,j=1

(FEi,j + FEi+k,j+k) and C1 =
k∑

i,j=1

(FEi+k,j + FEi,j+k). (4.45)

Taking f as equation (3.35) and setting

V P
f = Span

{
E

f
i,j [0, n] − (−1)ιE

f
k+j,k+i[n, 0], E

f
i,k+j [0, n] + (−1)ιE

f
j,k+i[n, 0],

E
f

k+i,j [0, n] − (−1)ιE
f

k+j,i[n, 0]|i, j ∈ 1, k, n ∈ N
}

(4.46)

then RP ( f ) is a free F[∂]-module over the above V P ( f ). Letting νP be the restriction of ν

on L(RP ( f )), then νP is surjective and, hence, νP is a Lie superalgebra isomorphism from
L(RP ( f )) to P( f ). By lemma 4.2, RP ( f ) is a conformal superalgebra.

For the last family, we pick m ∈ 1, k. Letting C be M(m+2k)×(m+2k)(F) with the grading by

C0 =
∑

i,j∈1,m

FEi,j +
∑

i,j∈m+1,m+2k

FEi,j and C1 =
∑

i∈1,m,j∈m+1,m+2k

(FEi,j + FEj,i)

(4.47)
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we take f as equation (3.35) and we let

V
osp

f = Span
{
E

f
a,b[0, r] − (−1)ιE

f
b,a[r, 0], E

f
a,j+m[0, r] + (−1)ιE

f
j+m+k,a[r, 0],

E
f

a,j+m+k[0, r] − (−1)ιE
f

j+m,a[r, 0],E
f

i+m,j+m[0, r] − (−1)ιE
f

j+m+k,i+m+k[r, 0],

E
f

i+m,j+m+k[0, r] + (−1)ιE
f

j+m,i+m+k[r, 0], E
f

i+m+k,j+m[0, r]

+ (−1)ιE
f

j+m+k,i+m[r, 0], |n ∈ Z, r ∈ N, i, j ∈ 1, k, a, b ∈ 1,m
}
. (4.48)

We define Rosp( f ) = F[∂]V osp( f ). Then Rosp( f ) is a free F[∂]-module over the above V
osp

f .

Letting νosp be the restriction of ν on L(Rosp( f )), it can be shown that νosp is surjective. As
a result, νosp is a Lie superalgebra isomorphism from L(Rosp( f )) to osp(m, 2k; f ). Hence,
Rosp( f ) is a conformal superalgebra by lemma 4.2.

Theorem 4.2. The conformal superalgebras R( f ),RQ( f ),R∗( f ),R†( f ),RP ( f ) and
Rosp( f ) are all simple.

Proof. Since L(R∗( f )), L(R†( f )), L(RP ( f )) and L(Rosp( f )) are all simple, and hence do
not contain proper nontrivial ideal (with one variable structure), theorem 4.1 implies that
R∗( f ),R†( f ),RP ( f ) and Rosp( f ) are all simple. By the same reason R( f ) and RQ( f ) are
simple provided that d �= 0. For d = 0, the only proper nontrivial ideal of gl(k1, f ) and
Q( f ) are FIk and (FIk, 0), respectively. Hence FIk(0, 0) ⊗ ζ 0 and F(Ik(0, 0), 0) ⊗ ζ 0 will
be the only nontrivial ideal for L(R( f )) and L(Q( f )), respectively. Let I be a nontrivial
ideal of R( f ). Then I[Z] is a nontrivial ideal of L(R( f )) by equation (4.9). Therefore, IZ

is either equal to FIk(0, 0) ⊗ ζ 0 or L(R( f )). Since it is not equal to the former, we have
I[Z] = L(R( f )). We can use equations (4.10)–(4.13) to show that I = R( f ). Therefore
R( f ) is simple. Similar arguments show that Q( f ) is also simple. �

5. Central extensions and generators

In this section, we construct certain central extensions of the conformal superalgebras
constructed in section 4 and the Lie superalgebras constructed in section 3. Moreover, we give
certain generator sets of the extended conformal superalgebras.

Let C and A be a Z2-graded associative algebra and an associative algebras, respectively,
and over the same field F. We define

B = C
⊗

F
A (5.1)

to be the Z2-graded tensor algebra, that is,

(u1 ⊗ v1)(u2 ⊗ v2) = u1u2 ⊗ v1v2 for u1, u2 ∈ C v1, v2 ∈ A (5.2)

and B inherits the grading of C. Then B forms a Lie superalgebra with the Lie superbracket
defined in equation (3.1). Suppose that θ(·, ·) : A × A → F is a 2-cocycle of A, that is,

θ(u, v) = −θ(v, u) θ(uv,w) + θ(vw, u) + θ(wu, v) = 0 (5.3)

for u, v,w ∈ A. We let κ(·, ·) : C × C → F be a supersymmetric associative bilinear form,
that is,

κ(u, v) = (−1)ijκ(v, u) for u ∈ Ci v ∈ Bj i, j ∈ Z2 (5.4)

and

κ(uv,w) = κ(u, vw) for u, v,w ∈ B. (5.5)
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We say that κ(·, ·) is graded with grading g ∈ Z2 if

κ(Ci , Cj ) = 0 for ij = g + 1 (5.6)

where i, j ∈ Z2. Now we define a bilinear form ϑ(·, ·) : B × B → F by

ϑ(u1 ⊗ v1, u2 ⊗ v2) = κ(u1, u2)θ(v1, v2) for u1, u2 ∈ C v1, v2 ∈ A. (5.7)

A bilinear form � of a Lie superalgebra L is said to be a 2-cocycle of L if

�(u, v) = −(−1)ij�(v, u) (5.8)

and

�([u, v], w) + (−1)(r+j)i�([v,w], u) + (−1)r(i+j)�([w,u], v) = 0 (5.9)

for u ∈ Li, v ∈ Lj and w ∈ Lr , where i, j, k ∈ Z2. We call a 2-cocycle � of Lie superalgebra
L a graded 2-cocycle with grading g ∈ Z2 if i, j ∈ Z2, then

�(Li, Lj ) = 0 when ij = g + 1. (5.10)

Lemma 5.1. The bilinear form ϑ(·, ·) is a 2-cocycle of the Lie superalgebra B. Moreover, if
κ(·, ·) is graded, then ϑ(·, ·) is also graded with the same grading as κ(·, ·).
Proof. This can be seen by checking equations (5.8)–(5.10) directly. �

The central extension of a Lie superalgebra (G, [·, ·]) associated with graded 2-cocycle ϑ

is the vector space

Ĝ = G
⊕

Fc (5.11)

with the Lie superbracket defined by

[u + λc, v + µc]̂ = [u, v] + ϑ(u, v)c for u, v ∈ G λ,µ ∈ F (5.12)

where c is a symbol for the base element of one-dimensional space Fc. The grading of c can
be defined as the same as the grading of ϑ . The properties (5.8) and (5.9) of ϑ imply that the
Lie bracket (5.12) satisfies the super skew-symmetry and super Jacobian identity.

Now putting A = A into equation (5.1), hence B = C
⊗

F
A. We take θ(·, ·) to be the

2-cocycle determined by Li [17], i.e.

θ
(
tn∂m

t , ts∂r
t

) = δn−m+s−r,0(−1)mm!r!

(
n

m + r + 1

)
(5.13)

for n, s ∈ Z,m, r ∈ N. Then for a given graded supersymmetric associative bilinear form κ of
C, we can have central extension of B by previous argument. Moreover, the Lie superbracket
on B̂ is given by

[
utn∂m

t + λc, vts∂r
t + µc

]̂ = [utn∂m
t , vts∂r

t

]
+ κ(u, v)δn−m+s−r,0(−1)mm!r!

(
n

m + r + 1

)
c

(5.14)

where u, v ∈ C, n, s ∈ Z,m, r ∈ N and λ,µ ∈ F.
Next we consider the central extensions of the conformal superalgebra R = C ⊗F F[t1, t2]

(cf equations (1.9) to (1.12)) with graded supersymmetric associative bilinear form κ(·, ·) of
C. We define

R̂ = R
⊕

F1 (5.15)



1776 S Ma

where 1 is a symbol for a base element of one-dimensional space F1. We define the F[∂]-action
on R by equation (1.11) and ∂1 = 0. The grading of 1 is defined to be the same as the grading
of κ .

Moreover, the structure map Y +(·, z) on R̂ is defined by

Y +(w, z)1 = Y +(1, z)w = 0 for w ∈ R̂ (5.16)

and

u(m1,m2)nv(n1, n2) =
(−n1 − 1

m2

)(
m1 + m2 + n1 − n

m1

)
uv(m1 + m2 + n1 − n, n2)

− (−1)ij
(−n2 − 1

m1

)(
m1 + m2 + n2 − n

m2

)
vu(n1,m1 + m2 + n2 − n)

+ δn,m1+m2+n1+n2+1

(−n1 − 1
m2

)(−n2 − 1
m1

)
κ(u, v)1 (5.17)

for u ∈ Ci , v ∈ Cj , i, j ∈ Z2 and m1,m2, n1, n2 ∈ N. It can be verified that R̂ is a conformal
superalgebra [21]. We define

L(R̂) = L(R)
⊕

F1 (5.18)

and

1(z) = 1. (5.19)

Then we can use equation (4.4) to define the Lie superbracket on L(R̂). Explicitly,

[u(0,m) ⊗ ζ n + λ1, v(0, r) ⊗ ζ s + µ1]̂ = [u(0,m) ⊗ ζ n, v(0, r) ⊗ ζ s]

+ (−1)m
(

n

m + r + 1

)
κ(u, v)δn+s−m−r,01 (5.20)

where u, v ∈ C, n, r ∈ Z,m, s ∈ N and λ,µ ∈ F. We define a linear map ν̂ : L(R̂) → L̂(R)

such that

ν̂(u(0,m) ⊗ ζ n + 1) = utn∂m
t + c (5.21)

where n, s ∈ Z,m ∈ N, and L̂(R) is the central extension of L(R) with Lie superbracket
defined according to equation (5.14).

Now we fix m, r ∈ N, n, s,∈ Z, λ, µ ∈ F and u, v ∈ C. We have

ν̂([u(0,m) ⊗ ζ n + λ1, v(0, r) ⊗ ζ s + µ1]̂) = v[u(0,m) ⊗ ζ n + v(0, r) ⊗ ζ s]

+ (−1)m
(

n

m + r + 1

)
κ(u, v)δn+s−m−r,0 c. (5.22)

On the other hand

[ν̂(u(0,m) ⊗ ζ n + λ1), ν̂(v(0, r) ⊗ ζ s + µ1)]̂

= [utn∂m
t , vts∂r

t

]
+ (−1)m

(
n

m + r + 1

)
κ(u, v)δn+s−m−r,0 c. (5.23)

Since we have already shown that ν is an isomorphism of L(R) in lemma 3.1, we have the
following lemma.

Lemma 5.2. The two Lie superalgebras L(R̂) and L̂(R) are isomorphic to each other.

Now we are ready to give the central extension of our conformal superalgebras
R( f ),RQ( f ),R∗( f ),R†( f ),RP ( f ) and Rosp( f ). At the same time, we give a set of
generators for them. For a subset S of a conformal superalgebra R, we define

C(S) = Span
{
u1

m1
. . . up

mp
v|uj , v ∈ S, p,mj ∈ N

}
. (5.24)
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We say that an element or a subset of R can be generated by S if they belong to C(S). If the
whole R can be generated by S, then S will be called a set of generators of R.

Recall that the conformal superalgebra R = Mk×k(A)
⊗

F
F[t1, t2] contains R( f ) and

R∗( f ) as two conformal sub-superalgebras. We define the bilinear form κ of Mk×k(A) by

κ(A,B) = str(AB) for A,B ∈ Mk×k(F) (5.25)

where str : Mk×k(F) → F is linear map defined by

str(Ei,j ) = (−1)d(i)δi,j for i, j ∈ 1, k. (5.26)

It can be shown that κ is supersymmetric associative bilinear with 0 grading.
We pick f as equation (3.8), and we define

R̂( f ) = R( f )
⊕

F1 = Span
{
E

f
i,j [m,n], 1|i, j ∈ 1, k,m, n ∈ N

}
. (5.27)

Then

E
f

i,j [p,m]nE
f

c,d [q, r] =
nj∑

u=0

(−1)m+u (m + u + q)!

(m + u + q − n)!
aj,uδj,cE

f
i,d [p + m + u + q − n, r]

− (−1)G
nd∑

v=0

(−1)p
(r + v + p)!

(r + v + p − n)!
ad,vδd,iE

f
c,j [q, p + m + r + v − n]

+
nj∑

u=0

nd∑
v=0

(q + m + u)!(r + v + p)!(−1)d(i)+m+u+paj,uad,vδj,cδi,dδn,p+m+q+r+v+11

(5.28)

where i, j, c, d ∈ 1, k,G = (d(i) + d(j))(d(c) + d(d)) and p,m, n, c, d ∈ N.
In the rest of the paper, we let k = k1 + k2 with k1, k2 ∈ Z+. We define

S f = {E f
i,j [0, 0], E

f
j,i[0, 0]|i ∈ 	0, j ∈ 	1

}
. (5.29)

Theorem 5.1. When k > 2 and d �= 0, the conformal superalgebra R̂( f ) can be generated

by S f . For k = 2 or d = 0, R̂( f ) can be generated by S f
⋃{

E
f

k,k[0, 1]
}
.

Proof. By

E
f

k,1[0, 0]n1+nk+1E
f

1,k[0, 0] = (−1)1+nkn1!nk!a1,n1ak,nk
1 (5.30)

we know 1 can be generated by S f and we can ignore the extension part in equation (5.28) for
the rest of our proof. �

Claim: If E
f

a,b[N, 0, r] can be generated by S f or by S f
⋃{

E
f

k,k[0, 1]
}

for r ∈ N, a, b ∈ 1, k

with d(a) �= d(b), then E
f

b,b[N, 0, r], E
f

b,a[N, 0, r] and E
f

a,a[N, 0, r] can also be generated by

S f or by S f
⋃{

E
f

k,k[0, 1]
}
, respectively.

To prove the claim, we employ its hypothesis. Note that

E
f

b,a[0, 0](na+nb+r ′+1)E
f

a,b[q + nb + r ′ + 1, r ′]

=
na∑

u=0

(−1)u
(u + q + nb + r ′ + 1)!

(u + q − na)!
aa,uE

f
b,b[u + q − na, r

′] (5.31)
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for q, r ′ ∈ N. Hence, we can use induction on q for different r ′ � r to show that E
f

b,b[N, 0, r]

can be generated by S f or by S f
⋃{

E
f

k,k[0, 1]
}
, respectively. Then using

E
f

b,a[0, 0]nb
E

f
b,b[q, r ′] = −

nb∑
v=0

ab,v

(r + v)!

(r + v − nb)!
E

f
b,a[q, r ′ + v − nb] (5.32)

for q, r ′ ∈ N, we can carry out induction on r ′ � r for different q ∈ N to show that

E
f

b,a[N, 0, r] can be generated by S f or by S f
⋃{

E
f

k,k[0, 1]
}
, respectively. This implies that

E
f

b,a[N, 0, r] can also be generated by S f or by S f
⋃{

E
f

k,k[0, 1]
}
, respectively.

Now we can divide the proof into two cases:

Case: k > 2and d �= 0
There exists j ∈ 1, k such that nj �= 0. We pick i ∈ 	d(j)+1, then for s ∈ 1, k−{i, j } �= ∅,

we have

E
f

i,j [0, 0]nj−εE
f

j,s [q, r] =
nj∑

u=0

(−1)u
(u + q)!

(u + q − nj + ε)!
aj,uE

f
i,s [u + q − nj + ε, r] (5.33)

and

E
f

j,i[0, 0]ni
E

f
i,s [q, r] =

ni∑
u=0

(−1)u
(u + q)!

(u + q − ni)!
ai,uE

f
j,s[u + q − nj , r] (5.34)

where q, r ∈ N and ε ∈ {0, 1}. Given r ∈ N, equation (5.33) with ε = 0 tells us that if

E
f

j,s[0, r] can be generated by S f , then so does E
f

i,s[0, r] while equation (5.34) implies the

opposite. Since either E
f

j,s[0, 0] or E
f

i,s[0, 0] is in S f , both can be generated by S f . We

suppose that E
f

j,s[q
′, r] and E

f
i,s [q ′, r] can be generated by S f for all q ′ � q with a q ∈ N.

Equation (5.33) with ε = 1 implies E
f

i,s [q + 1, r] can be generated by S f and then equation

(5.34) implies that E
f

j,s[q + 1, r] can also be generated by S f . In particular, E
f

j,s[l, 0] and

E
f

i,s[l, 0] can be generated by S f for all l ∈ N by induction.

Next we would like to prove that E
f

s,i[l, 0] can be generated by S f for all l ∈ N. If

d(s) = d(i), then E
f

s,i[N, 0] can be generated by S f because of the symmetry between i and

s. On the other hand, if d(s) = d(j), then E
f

i,s [N, 0] can be generated by S f implying that

E
f

s,i[N, 0] can also be generated by S f , according to the claim.
Note that

E
f

i,j [0, 0]ni
E

f
s,i[q, r] = −(−1)d(i)+d(s)

ni∑
v=0

(r + v)!

(r + v − ni)!
ai,vE

f
s,j [q, r + v − ni] (5.35)

and

E
f

j,i[0, 0]nj−εE
f

s,j [q, r] = −(−1)d(s)+d(j)

nj∑
v=0

(r + v)!

(r + v − nj + ε)!
ai,vE

f
s,j [q, r + v − nj + ε]

(5.36)

for q, r ∈ N and ε ∈ {0, 1}. Given q ∈ N, we already have E
f

s,i[q, 0] generated by S f . Hence,

we can carry out induction on r to show that E
f

s,i[q, N] and E
f

s,j [q, N] can also be generated

by S f . It follows that E
f

s,i[N, N] and E
f

s,j [N, N] can be generated by S f .
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Lastly, we suppose d(s) = d(i). Then the fact that E
f

s,j [N, N] can be generated by S f
implies that E

f
j,j [N, N], E

f
j,s[N, N] and E

f
s,s[N, N] can be generated by S f , according to the

claim. Symmetrically, E
f

i,s[N, N], E
f

i,j [N, N], E
f

j,i[N, N] and E
f

i,i[N, N] can also be generated

by S f . On the other hand, if d(s) = d(j), then the claim implies that E
f

i,i[N, N], E
f

i,s[N, N]

and E
f

s,s[N, N] can be generated by S f . Since E
f

s,i[N, N] can be generated by S f . Moreover

E
f

i,s[N, N] can be generated by S f implies that E
f

j,s[N, N] can be generated by S f (cf (5.33)
and (5.34)). Using

E
f

i,j [0, 0]ni
E

f
i,i[q, r] = −

ni∑
v=0

ai,v

(r + v)!

(r + v − ni)!
E

f
i,j [q, r + v − ni] for q, r ∈ N (5.37)

we can show that E
f

i,j [N, N] can be generated by S f . Then the claim implies that E
f

j,j [N, N]

and E
f

j,i[N, N] can also be generated by S f . Finally, if s1, s2 ∈ 	d(j) − {j } and s1 �= s2, then
the fact that

E
f

s1,i
[0, 0]ni

E
f

i,s2
[q, r] =

ni∑
u=0

(−1)u
(u + q)!

(u + q − ni)!
ai,uE

f
s1,s2

[q + u − n1, r]

for q, r ∈ N (5.38)

show that E
f

s1,s2 [N, N] can be generated by S f .

We can use similar arguments to deal with the other case of d = 0 or k = 2.

We take f as equation (3.23), and we define

R̂∗( f ) = R∗( f )
⊕

F1 = Span{E∗
i,j [m,n], 1|i, j ∈ 1, k,m, n ∈ N} (5.39)

where

E∗
i,j [m,n] = E

f
i,j [m,n] − (−1)ι+ε(i,j)E

f
j,i[n,m] for i, j ∈ 1, k m, n ∈ N. (5.40)

We define

S∗
f = {E∗

i,j [0, 0]|i ∈ 	0, j ∈ 	1}. (5.41)

Theorem 5.2. When k > 2, the conformal superalgebra R̂∗( f ) can be generated by S∗
f . When

k = 2, R̂( f ) can be generated by S∗
f
⋃{E∗

2,2[0, 1]}.
Proof. This is similar to the proof of theorem 5.1. �

Let C = Mk×k(F) × Mk×k(F) with the grading defined in equation (4.37). Then
C
⊗

F
F[t1, t2] will be a conformal superalgebra which contains RQ( f ) as a conformal sub-

superalgebra. We define the bilinear form κ of C by

κ(A[i], B[j ]) = δi+j,1 tr(AB) for A,B ∈ Mk×k(F) i, j ∈ Z2 (5.42)

where tr is simply the trace of the matrix. It is easy to show that κ is supersymmetric associative
bilinear with grading 1.

Taking f as equation (3.8), we define

R̂Q( f ) = RQ( f )
⊕

F1 = Span
{(

E
f

i,j

)
[λ][m,n], 1|λ ∈ Z2,m, n ∈ N

}
. (5.43)

We define

S
Q

f = {(E f
i,j

)
[d(i)][0, 0],

(
E

f
j,i

)
[d(j)][0, 0]|i ∈ 	0, j ∈ 	1

}
. (5.44)
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Theorem 5.3. When k > 2 and d �= 0, the conformal superalgebra R̂Q( f ) is generated by

S
Q

f . When k = 2 or d = 0, R̂Q( f ) can be generated by S
Q

f
⋃{(

E
f

k,k

)
[1][0, 1]

}
.

Proof. This is similar to the proof of theorem 5.1. �

Letting c : 1, 2k → Z2 such that

c(1, k) = 0 and c(k + 1, 2k) = 1 (5.45)

we define T : 1, 2k → 1, 2k by

T (i) =
{
i + k for i ∈ 1, k,

i − k for i ∈ k + 1, 2k.
(5.46)

Let C = M2k×2k(A) with the grading defined in equations (4.42) and (4.43). Then C
⊗

F
F[t1, t2]

is a conformal superalgebra which contains R†( f ) as a conformal sub-superalgebra. We define
the bilinear form κ on C by

κ(A,B) = str(AB) for A,B ∈ M2k×2k(F) (5.47)

where str : M2k×2k(F) → F is a linear map defined by

str(Ei,j ) = (−1)d(i)δi,j for i, j ∈ 1, 2k. (5.48)

Then κ is supersymmetric associative bilinear with grading 0.
If we let C = M2k×2k but the grading is defined as equation (4.45), then C

⊗
F
F[t1, t2] is a

conformal superalgebra which contains RP ( f ) as a conformal sub-superalgebra. In this case,
we define the bilinear form κ on C by

κ(A,B) = str(AB) for A,B ∈ M2k×2k(F) (5.49)

where str : M2k×2k(F) → F is a linear map defined by

str(Ei,j ) = (−1)c(i)δi,j for i, j ∈ 1, 2k. (5.50)

It can be shown that κ is supersymmetric associative bilinear with grading 0.
We define

e0(i) = d(i) and e1(i) = c(i) for i ∈ 1, 2k. (5.51)

Taking f as equation (3.23), we define

R̂†( f ) = R†( f ) ⊕ F1 = Span{E†
i,j [m,n], 1|i, j ∈ 1, 2k m, n ∈ N} (5.52)

where for i, j ∈ 1, 2k,m, n ∈ N,

E
†
i,j [m,n] = E

f
i,j [m,n] − (−1)ι+ε(i,j)+c(i)+c(j)E

f
T (j),T (i)[n,m]. (5.53)

Taking f as equation (3.35), we define

R̂P ( f ) = RP ( f )
⊕

F1 = Span
{
EP

i,j [m,n], 1|i, j ∈ 1, 2k m, n ∈ N
}

(5.54)

where

EP
i,j [m,n] = E

f
i,j [m,n] − (−1)ι+c(j)E

f
T (j),T (i)[n,m] for i, j ∈ 1, 2k m, n ∈ N.

(5.55)

Letting

E0
i,j [m,n] = E

†
i,j [m,n] E1

i,j [m,n] = EP
i,j [m,n] (5.56)

and

φ0(i, j) = ι + ε(i, j) + c(i) + c(j) φ1(i, j) = ι + c(j) (5.57)
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for i, j ∈ 1, 2k and m,n ∈ N, we have

El
i,j [p,m]nE

l
c,d [q, r]

= (E f
i,j [p,m] − (−1)φl(i,j)E

f
T (j),T (i)[m,p]

)
n

((
E

f
c,d [q, r]

− (−1)φl(c,d)E
f

T (d),T (c)[r, q]
)

=
nj∑

u=0

(−1)m+u (m + u + q)!

(m + u + q − n)!
aj,uδj,cE

l
i,d [p + m + u + q − n, r]

− (−1)Gl

nd∑
v=0

(−1)p
(r + v + p)!

(r + v + p − n)!
ad,vδd,iE

l
c,j [q, p + m + r + v − n]

− (−1)φl(i,j)

(
ni∑

u=0

(−1)p+u (p + u + q)!

(p + u + q − n)!
ai,uδT (i),cE

l
T (j),d

× [m + p + u + q − n, r]

− (−1)Gl

nd∑
v=0

(−1)m
(r + v + m)!

(r + v + m − n)!
ad,vδd,T (j)E

l
c,T (i)[q,m + p + r + v − n]

)

+ 2(−1)el(i)

nj∑
u=0

nd∑
v=0

(q + m + u)!(r + v + p)!(−1)m+p+u

× aj,uad,vδj,cδi,dδn,p+m+u+q+r+v+1δ0,11

− 2(−1)φl(i,j)+el (T (j))

ni∑
u=0

nd∑
v=0

(
(q + p + u)!(r + v + m)!(−1)p+m+u

× ai,uad,vδT (i),cδT (j),dδn,m+p+u+q+r+v+1δ0,11
)

(5.58)

where l ∈ {0, 1}, i, j, c, d ∈ 1, k, p,m, q, r ∈ N and Gl = (el(i) + el(j))(el(c) + el(d)). We
define

S
†
f = {E†

i,j [0, 0]|i, j ∈ 1, 2k with d(i) = 0, d(j) = 1
}
. (5.59)

Theorem 5.4. When k > 2, the conformal superalgebra R̂†( f ) can be generated by S
†
f . When

k = 2, R̂†( f ) can be generated by S
†
f
⋃{E†

2,2[0, 1]}.
We define

SP
f = {EP

i,j [0, 0]|i, j ∈ 1, 2k with d(i) = 0, d(j) = 1
}
. (5.60)

In (5.58), the factor δ0,1 in the coefficient of 1 makes the central element of R̂P ( f )

de trop and hence we develop the following theorem for RP ( f ) in lieu of R̂P ( f ).

Theorem 5.5. When k > 2, the conformal superalgebra RP ( f ) can be generated by SP
f .

When k = 2, RP ( f ) can be generated by SP
f
⋃{

EP
2,2[0, 1]

}
.

Proof of theorem 6.4 and 6.5. Throughout the proof, l ∈ {0, 1}. Let S0
f = S

†
f and S1

f = SP
f .

Moreover, since

El
i,j [0, 0] = −(−1)φl(i,j)El

T (j),T (i)[0, 0] for i, j ∈ 1, 2k (5.61)

we can treat El
i,j [0, 0] as an element of Sl

f in the rest of the calculation.
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Using

El
k,1[0, 0]n1+nk+1E

l
1,k[0, 0] = 2(−1)l+ι+1n1!nk!a1,n1ak,nk

1 (5.62)

we know 1 can be generated by Sl
f and we can ignore the extension part in equation (5.58) for

the rest of our proof.
�

Claim: If El
a,b[N, 0, r] can be generated by Sl

f or Sl
f
⋃{

El
k,k[0, 1]

}
for r ∈ N, a, b ∈

1, 2k with d(a) �= d(b), then El
b,b[N, 0, r], El

T (b),b[N, 0, r], El
b,a[N, 0, r]El

a,a[N, 0, r] and

El
T (a),a[N, 0, r] can also be generated by Sl

f or Sl
f
⋃{

El
k,k[0, 1]

}
, respectively.

To prove the claim, we employ its hypothesis. Note that

El
c,a[0, 0](na+nb+r ′+1)E

l
a,b[q + nb + r ′ + 1, r ′]

=
na∑

u=0

(−1)u
(u + q + nb + r ′ + 1)!

(u + q − na)!
aa,uE

l
c,b[u + q − na, r

′] (5.63)

where c can be either b or T (b) for q, r ′ ∈ N.
Hence, we can carry out induction on q for different r ′ � r to show that both El

b,b[N, 0, r]
and El

T (b),b[N, 0, r] can be generated by Sl
f or Sl

f
⋃{

El
k,k[0, 1]

}
, respectively. On the other

hand,

El
b,a[0, 0]nb

El
b,b[q, r ′] = −

nb∑
v=0

ab,v

(r + v)!

(r + v − nb)!
E∗

b,a[q, r ′ + v − nb] for q, r ′ ∈ N.

(5.64)

Hence, we can perform an induction on r ′ � r for different q ∈ N to show that El
b,a[N, 0, r]

can be generated by Sl
f or Sl

f
⋃{

El
k,k[0, 1]

}
, respectively. This implies that El

a,a[N, 0, r] and

El
T (a),a[N, 0, r] can also be generated by Sl

f or Sl
f
⋃{

El
k,k[0, 1]

}
, respectively.

Now we can divide the proof into two cases:

Case: d �= 0 and k > 2

There exist j ∈ 1, 2k such that nj �= 0. We pick i such that d(i) = d(j) + 1. Then for
s ∈ 1, 2k − {i, j, T (i), T (j)} �= ∅,

El
i,j [0, 0]nj−εE

l
j,s [q, r] =

nj∑
u=0

(−1)u
(u + q)!

(u + q − nj + ε)!
aj,uE

l
i,s [u + q − nj + ε, r] (5.65)

El
j,i[0, 0]ni

El
i,s [q, r] =

ni∑
u=0

(−1)u
(u + q)!

(u + q − ni)!
ai,uE

l
j,s [u + q − nj , r] (5.66)

where r, q ∈ N and ε ∈ {0, 1}. Given r ∈ N (5.65) with ε = 0 tells us that if El
j,s [0, r]

can be generated by Sl
f , then so does El

i,s[0, r], while equation (5.66) implies the opposite.

Since either El
j,s[0, 0] or El

i,s [0, 0] belongs to Sl
f , both can be generated by Sl

f . We suppose

El
j,s[q

′, r] and El
i,s[q

′, r] can be generated by Sl
f for all q ′ � q for q ∈ N. Equation (5.65)

with ε = 1 implies that El
i,s[q + 1, r] can be generated by Sl

f and then equation (5.66) implies

El
j,s[q + 1, r] does also. As a result, El

j,s[N, 0] and El
i,s[N, 0] can be generated by Sl

f .
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Next we would like to show that El
s,i[l, 0] can be generated by Sl

f for all l ∈ N. If

d(s) = d(i), then El
s,i[N, 0] can be generated by Sl

f because of the symmetry between i and s.

On the other hand, if d(s) = d(j), then the fact that El
i,s[N, 0] can be generated by Sl

f implies

that El
s,i[N, 0] can also be generated by Sl

f , according to the claim.
Note that

El
i,j [0, 0]ni

El
s,i[q, r] = −(−1)(el(i)+el(j))(el(s)+el(i))

ni∑
v=0

(r + v)!

(r + v − ni)!
ai,vE

l
s,j [q, r + v − ni]

(5.67)

El
j,i[0, 0]nj−εE

l
s,j [q, r]

= −(−1)(el(j)+el(i))(el(s)+el(j))

nj∑
v=0

(r + v)!

(r + v − nj + ε)!
ai,vE

l
s,i[q, r + v − nj + ε]

(5.68)

for q, r ∈ N and ε ∈ {0, 1}. Given q ∈ N, we already have El
s,i[q, 0] or El

s,j [q, 0] generated
by Sl

f . Hence, we can carry out an induction on r to show that El
s,i[q, N] and El

s,j [q, N] can

also be generated by Sl
f . It follows that El

s,i[N, N] and El
s,j [N, N] can be generated by Sl

f .

Finally, suppose d(s) = d(i). Then the fact that El
s,j [N, N] can be generated by Sl

f
implies that El

j,j [N, N], El
T (j),j [N, 0, r], El

s,s [N, N] and El
T (s),s[N, N] can be generated by

Sl
f , according to the claim. Symmetrically, El

i,j [N, N], El
i,i[N, N] and El

T (i),i[N, N] can also

be generated by Sl
f . On the other hand, if d(s) = d(j), then the fact that El

s,i[N, N]

can be generated by Sl
f implies that El

i,i[N, N], El
T (i),i[N, N], El

i,s[N, N], El
s,s[N, N] and

El
T (s),s[N, N] can also be generated by Sl

f , according to the claim. Moreover, the fact that

El
i,s[N, N] can be generated by Sl

f implies that El
j,s[N, N] can also be generated by Sl

f
(cf equations (5.65) and (5.66)). Using

El
i,j [0, 0]ni

El
i,i[q, r] = −

ni∑
v=0

ai,v

(r + v)!

(r + v − ni)!
El

i,j [q, r + v − ni] for q, r ∈ N

(5.69)

we can show that El
i,j [N, N] can be generated by Sl

f . Then the claim will imply

that El
j,j [N, N], El

T (j),j [N, N] and El
j,i[N, N] can also be generated by Sl

f . Finally, if

d(s1) = d(s2) = j with s1 not equal to either s2 or T (s2), then

E
f

s1,i
[0, 0]ni

E
f

i,s2
[q, r] =

ni∑
u=0

(−1)u
(u + q)!

(u + q − ni)!
ai,uE

f
s1,s2

[q + u − n1, r] for q, r ∈ N

(5.70)

show that E
f

s1,s2 [N, N] can be generated by Sl
f .

Again, we can use similar arguments to deal with the case of d = 0 or k = 2.

Taking f as equation (3.35), we let m ∈ 1, k. We define e2 : 1,m + 2k → Z2 by

e2(i) =
{

0 if i ∈ 1,m

1 if i ∈ m + 1,m + 2k.
(5.71)
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Letting C = Mm+2k,m+2k(F) with the grading defined as equation (4.47), then C
⊗

F
[t1, t2]

is a conformal superalgebra which contains Rosp( f ) as a conformal sub-superalgebra. We
define the bilinear form κ on C by

κ(A,B) = str(AB) for A,B ∈ Mm+2k,m+2k (5.72)

where str : Mm+2k,m+2k(F) → F is a linear map defined by

str(Ei,j ) = (−1)e2(i)δi,j for i, j ∈ 1,m + 2k. (5.73)

Then, κ is a supersymmetric associative bilinear form with grading 0.
We define

R̂osp( f ) = Rosp( f )
⊕

F1 = Span{Aα,β[q, r]

Fα,i+m[q, r],Hi+m,j+m[q, r], 1|i, j ∈ 1, 2k, α, β ∈ 1,m, q, r ∈ N} (5.74)

where

Aα,β[q, r] = E
f

α,β [q, r] − (−1)ιE
f

β,α[r, q] (5.75)

Fα,i+m[q, r] = E
f

α,i+m[q, r] + (−1)ι+c(i)E
f

T (i)+m,c[r, q] (5.76)

Hi+m,j+m[q, r] = E
f

i+m,j+m[q, r] − (−1)ι+c(i)+c(j)E
f

T (j)+m,T (i)+m[r, q] (5.77)

with α, β ∈ 1,m, i, j ∈ 1, 2k and q, r ∈ N. Then we have

Aα,β[p,w]nHi+m,j+m[q, r] = Hi+m,j+m[q, r]nAα,β[p,w] = 0 (5.78)

Aα,β[p,w]nAγ,θ [q, r] =
nβ∑

u=0

(−1)w+u (w + u + q)!

(w + u + q − n)!
aβ,uδβ,γ Aα,θ [p + w + u + q − n, r]

−
nθ∑

v=0

(−1)p
(r + v + p)!

(r + v + p − n)!
aθ,vδθ,αAγ,β[q, p + w + r + v − n]

− (−1)ι

(
nα∑

u=0

(−1)p+u (p + u + q)!

(p + u + q − n)!
aα,uδα,γ Aβ,θ [w + p + u + q − n, r]

−
nθ∑

v=0

(−1)w
(r + v + w)!

(r + v + w − n)!
aθ,vδθ,βAγ,α[q,w + p + r + v − n]

)

+ 2
nβ∑

u=0

nθ∑
v=0

(q + w + u)!(r + v + p)!(−1)w+p+ιaβ,uaθ,vδβ,γ δα,θ δn,p+w+u+q+r+v+11

− 2
nα∑

u=0

nθ∑
v=0

(q + p + u)!(r + v + w)!(−1)p+waα,uaθ,vδα,γ δβ,θ δn,w+p+u+q+r+v+11

(5.79)

Fα,j+m[p,w]nFβ,d+m[q, r]

= (−1)c(d)+w

nj∑
u=0

(w + u + r)!

(w + u + r − n)!
aj,uδj,T (d)Aα,β[p + w + u + r − n, q]

+ (−1)ι+c(d)+p

nβ∑
v=0

(q + v + p)!

(q + v + p − n)!
aβ,vδβ,αHT (d)+m,j+m[r, p + w + q + v − n]
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+ (−1)c(d)+w+p2
nj∑

u=0

nβ∑
v=0

(r + w + u)!(q + v + p)!aj,uaβ,vδj,T (d)

× δα,βδn,p+w+q+r+v+11 (5.80)

Hi+m,j+m[p,w]nHc+m,d+m[q, r]

=
nj∑

u=0

(−1)w+u (w + u + q)!

(w + u + q − n)!
aj,uδj,cHi+m,d+m[p + w + u + q − n, r]

−
nd∑

v=0

(−1)p
(r + v + p)!

(r + v + p − n)!
ad,vδd,iHc+m,j+m[q, p + w + r + v − n]

− (−1)ι+c(i)+c(j)

(
ni∑

u=0

(−1)p+u (p + u + q)!

(p + u + q − n)!
ai,uδT (i),cHT (j)+m,d+m

× [w + p + u + q − n, r]

−
nd∑

v=0

(−1)w
(r + v + w)!

(r + v + w − n)!
ad,vδd,T (j)Hc+m,T (i)+m[q,w + p + r + v − n]

)

− 2
nj∑

u=0

nd∑
v=0

(q + w + u)!(r + v + p)!(−1)w+p+uaj,uad,vδj,cδi,dδn,p+w+u+q+r+v+11

+ 2(−1)ι+c(i)+c(j)

ni∑
u=0

nd∑
v=0

((q + p + u)!(r + v + w)!(−1)p+w+u

× ai,uad,vδT (i),cδT (j),dδn,w+p+u+q+r+v+11) (5.81)

Aα,β[q, r]nFγ,j+m[p,w]

= (−1)r+ι

nβ∑
u=0

(r + u + p)!

(r + u + p − n)!
aβ,uδβ,γ Fα,j+m[q + r + u + p − n,w]

+ (−1)q+1
nα∑

u=0

(q + u + p)!

(q + u + p − n)!
aα,uδα,γ Fβ,j+m[r + q + u + p − n,w] (5.82)

Hi+m,j+m[p,w]nFα,d+m[q, r]

= (−1)p+1
nd∑

v=0

(r + v + p)!

(r + v + p − n)!
ad,vδd,iFα,j+m[q, p + w + r + v − n]

+ (−1)ι+c(i)+c(j)+w

nd∑
v=0

(r + v + w)!

(r + v + w − n)!
ad,vδd,T (j)Fα,T (i)+m

× [q,w + p + r + v − n] (5.83)

Fα,j+m[p,w]nAβ,γ [q, r]

= (−1)p
nγ∑

v=0

(r + v + p)!

(r + v + p − n)!
aγ,vδγ,αFβ,j+m[q, p + w + r + v − n]

+ (−1)ι+p

nβ∑
v=0

(q + v + p)!

(q + v + p − n)!
aβ,vδβ,αFγ,j+m[r, p + w + q + v − n] (5.84)
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and

Fα,j+m[p,w]nHc+m,d+m[q, r]

= (−1)w+ι

nj∑
u=0

(w + u + q)!

(w + u + q − n)!
aj,uδj,cFα,d+m[p + w + u + q − n, r]

− (−1)c(c)+c(d)+w

nj∑
u=0

(w + u + r)!

(w + u + r − n)!
aj,uδj,T (d)Fα,T (c)+m

× [p + w + u + r − n, q] (5.85)

for α, β, γ, θ ∈ 1,m, i, j, c, d ∈ 1, 2k and p,w, q, r ∈ N. Define

S
osp

f = {Fα,i+m[0, 0]|α ∈ 1,m, i ∈ 1, 2k}. (5.86)

Then we can use equations (5.78)–(5.85) to prove the following theorem:

Theorem 5.6. When d �= 0, then R̂osp( f ) can be generated by S
osp

f . Otherwise, it can be

generated by S
osp

f
⋃{Hk+m,k+m[0, 1]}.
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